1989-14846 175150 138

STRATEGY FOR D-3He FUSION DEVELOPMENT

John F. Santarius Fusion Technology Institute University of Wisconsin – Madison Madison, WI 53706

W4560409

PRECEDING PAGE BLANK NOT FILMED

Issues for D-3He Fusion Development

• Physics

• Plasma Heating

• Fueling

- Current Drive
- Power Density
- High-Efficiency Operation
- First Wall Heat Flux
- Safety

• Materials

- Environment
- Licensing

Progress Toward Fusion Ignition Conditions

Plasma Fueling is More Difficult For D-³He Fusion Reactors

- Fuel pellets ablate more quickly in hotter plasmas and pellet fabrication is difficult
- Fueling by plasma injection appears to be a very promising option
 - -Marshal gun plasma fueling was done successfully on Tokapole II
 - -Compact toroid fueling (proposed for U.S. ITER/TIBER) allows injection velocities of 100's of km/s
- Neutral beam fueling is also an option

Power Density Should be Measured in kWe/kg not in kW_{fus}/V_{plasma}

- Traditional power density arguments based on $\beta^2 B^4$ scaling are only very rough indicators of performance
- Reduced neutron flux helps greatly
 - -Reduced shield thickness and mass
 - -Reduced magnet size and mass
 - -Increased B field at plasma
- Direct conversion increases net electric power
- Many configurations can increase B fields in the fusion core

HARD	MODERATE	EASY
S/C Tokamak	Copper Tokamak	RFP
Stellarator	Heliotron	\mathbf{FRC}
Torsatron		Tandem Mirror
		Spheromak
		\mathbf{EBT}

Increased Heat Fluxes for D-3He Reactor First Walls are Manageable

- · Zeroth order increase in heat flux is a factor of five
- Reduced neutron shielding allows larger first wall radius and area
- Present conceptual DT tokamak reactors are designed well below technologically allowable heat flux limits $(\sim 4 \text{ MW/m}^2)$
 - -Ratio of approximate technological limit to reactor design point:

DESIGN	RATIO	
STARFIRE	4.4	
NUWMAK	3.6	

Materials Suitable for D-3He Reactors Have Already Been Tested

 The fission reactor program has provided ample data on neutron damage to materials in the range of temperatures and fluences required for a D-3He fusion reactor

D-3He Plasma Heating is Similar to D-T Plasma Heating in Difficulty

- Ion Cyclotron Range of Frequencies (ICRF) heating of ³He has been successfully demonstrated on JET
 - -Produced 50 kW of D-3He thermonuclear fusion power
 - -Average ³He energy rose to 200-500 keV (minority heating mode, D background)
- Electron Cyclotron Range of Frequencies (ECRF) heating requires the same technology
- Higher D-³He plasma temperatures will lead to somewhat higher neutral beam energy requirements
- Adiabatic compression should be easier because the plasma will be hotter and more ideal (in an MHD sense)

Current Drive Physics and Technology Must be Better Understood before Judging with Respect to D-³He Fusion

- Higher electron temperatures for D-3He make current drive easier
- D-3He fusion probably requires larger plasma currents
- Current drive by synchrotron radiation is easier for D-3He reactors

Direct Conversion to Electricity Should Be Vigorously Pursued

- Potential net plant efficiencies of 70%
- Electrostatic direct conversion
 - -Periodically focussed
 - -Venetian blind
- Electromagnetic direct conversion
 - -Adiabatic compression/decompression cycles
 - -Synchrotron radiation conversion using rectennas
- Very high temperature thermal cycles
 - -MHD conversion
 - -Radiation boiler
 - -Synfuel production

Utilities Want Ease of Licensing

- Utility and Industry fusion advisory committees repeatedly stress that safety, environment, protection of investment, and licensing should be major thrusts of fusion power development
- D-3He fusion will assure:
 - -Safety because of the low radioactive volatile inventory
 - -Environmental quality because only very low-level (Class A) wastes will remain at end of reactor life
 - -Protection of investment due to low afterheat (no meltdown even a month after shutdown under adiabatic conditions)
 - -Ease of licensing because a D-3He fusion reactor will truly be inherently safe

D-³He Fusion Development Requires Harder Physics But Easier Technology

D-3He Physics and Technology Versus D-T

D-³He Fusion and Lunar ³He Procurement Could Occur on a Consistent Timescale

LUNAR BASE DEVELOPMENT SCENARIO

D-3He TOKAMAK DEVELOPMENT PATH

- 1) CIT (Compact Ignition Tokamak): Design planned D-T device to achieve D- 3 He Q ≥ 2 in an early phase of operation
- 2) ITER (International Tokamak Experimental Reactor): Design planned D-T device to achieve D-³He ignition in an early phase of operation
- 3) DEMO (Demonstration Reactor): Add power conversion and other systems to ITER in a follow-on stage to demonstrate D-³He commercial reactor viability

D-³He Fusion Development Requires Harder Physics But Easier Technology

D-He3 DEVELOPMENT SCENARIO

Strategy for D-3He Fusion Development

HIGH-LEVERAGE D-3He CONCEPTS PATH

- 1) Investigate whether a D-³He operation phase in presently planned major experiments would provide significant information
- 2) Investigate the feasibility and cost of a D-3He ignition (high-Q) experiment
- 3) Quantify advantages and disadvantages of the D-3He reactor embodiment of candidate, high-leverage concepts

Tokamak Plasma Power Balance Computer Code Prof. G.A. Emmert

Ingredients of the model:

- Charged Particle Heating a fraction of the fusion power goes to the ions; based on slowing down theory from the Fokker-Planck equation
- 2) Fast Ion Pressure
- 3) Bremsstrahlung with relativistic corrections
- 4) Synchrotron Radiation uses Trubnikov's "universal" formula
- Energy transport across the magnetic field uses empirical formulas for T_E; Kaye-Goldston or ASDEX H-Mode
- 6) Electron-Ion Energy Transfer classical + relativistic corrections
- 7) MHD Limits uses the Troyon β_c formula
- 8) Particle Confinement Ash accumulation

$$au_p = au_E$$

9) Density and temperature profiles are legislated

$$n \sim (1 - r^2/a^2)^{\alpha_n}$$

$$T \sim (1 - r^2/a^2)^{\alpha_T}$$

It does not include:

- 1) 2 component mode of operation $\langle \sigma v \rangle$ is Maxwellian averaged
- 2) Impurities other than the fusion produced ash
- 3) Current drive considerations

The code calculates the ignition margin, M,

$$M = \frac{P_{\text{FUSION}}}{\sum P_{\text{LOSSES}}}$$

and the energy multiplication,

$$Q = \frac{P_{\rm FUSION}}{P_{\rm inj}} = \frac{M}{1 - M}$$

for a given T_i or T_e . The temperature of the other species is determined by a power balance on that species.

If the plasma is ignited, then M>1 and $P_{\rm inj}<0$. One has to enhance the energy loss to maintain the plasma at that temperature.

D-³He Operation Allows Inboard Shielding To Be Reduced and a Magnetic Field Increase

Achieving D-³He Ignition Will Require Many Trade-Offs

CRIGINAL PAGE IS OF POSE QUALITY

- Under present NET (Next European Torus) scaling guidelines, a D-³He plasma would ignite in an early phase of a modified (~10% cost penalty) D-T ITER experiment
 - -Highest-impact modifications would be to reduce shielding thickness, move the plasma to a smaller major radius, and increase the magnetic field at the coils
 - -CIT could similarly achieve Q≥2
- Under the most pessimistic of the scaling laws, neither a D-³He plasma nor a D-T plasma would ignite in ITER unless the size were increased
- The question of whether D-3He physics could be demonstrated on the next generation D-T experiments deserves careful consideration, even at modest cost increase for the device

REQUIRMENTS OF DHe-3 PHYSICS AND TECHNOLOGY VS THE DT CYCLE

AREA	HARDER	SIMILAR	EASIER
PHYSICS			
FUELING			
PLASMA HTG			
CURRENT DR			
FW HT FLUX			
MASS POWER DENSITY			
MATERIALS			
HIGH EFF. OP			
SAFETY			
ENVIRONMENT			
LICENSING			

ORIGINAL PAGE IS OF POOR QUALITY

Conclusions

- D-3He fusion faces a more difficult physics development path but an easier technology development path than does D-T fusion
- Early D-³He tests in next generation (CIT and ITER)
 D-T fusion experiments might provide a valuable
 D-³He proof-of-principle at modest cost (~10%)
- At least one high-leverage alternate concept should be vigorously pursued
- Space applications of D-3He fusion are critically important to large-scale space development